	DAYBREAK	G-109 BE	ACH BACK	ВЕ			
Analyte	RESULT	DL	RL	RESULT	DL	RL	
Dioxins/Furans (pg/g)							
1,2,3,4,6,7,8-Hepta CDD	0.300	0.0950	1.00				
1,2,3,4,6,7,8-Hepta CDF	ND	0.0760	1.00				
1,2,3,4,7,8,9-Hepta CDF	ND	0.0757	1.00				
1,2,3,4,7,8-Hexa CDD	ND	0.108	1.00				
1,2,3,4,7,8-Hexa CDF	ND	0.0891	1.00				
1,2,3,6,7,8-Hexa CDD	ND	0.113	1.00				
1,2,3,6,7,8-Hexa CDF	ND	0.0929	1.00				
1,2,3,7,8,9-Hexa CDD	ND	0.113	1.00				
1,2,3,7,8,9-Hexa CDF	ND	0.0898	1.00				
1,2,3,7,8-Penta CDD	ND	0.0948	1.00				
1,2,3,7,8-Penta CDF	ND	0.0948	1.00				
2,3,4,6,7,8-Hexa CDF	ND	0.0842	1.00				
2,3,4,7,8-Penta CDF	ND	0.0923	1.00				
2,3,7,8-Tetra CDD	ND	0.109	0.200				
2,3,7,8-Tetra CDF	ND	0.101	0.200				
Octa CDD	1.45	0.199	2.00				
Octa CDF	ND	0.200	2.00				
Total Hepta CDD	0.564	0.0950	1.00				
Total Hepta CDF	0.0901	0.0758	1.00				
Total Hexa CDD	0.128	0.112	1.00				
Total Hexa CDF	ND	0.0889	1.00				
Total Penta CDD	ND	0.0948	1.00				
Total Penta CDF	ND	0.0936	1.00				
Total Tetra CDD	ND	0.109	0.200				
Total Tetra CDF	ND	0.101	0.200				
Polychlorinated Biphenyls (ug/kg)							
Aroclor 1016	ND		10.2				
Aroclor 1221	ND		10.2				
Aroclor 1232	ND		10.2				
Aroclor 1242	ND		10.2				
Aroclor 1248	ND		10.2				
Aroclor 1254	ND		10.2				
Aroclor 1260	ND		10.2				
Organochlorine Pesticides (ug/kg)							
Aldrin	ND		4.42				
alpha-BHC	ND		4.42				
beta-BHC	ND		4.42				
delta-BHC	ND		4.42				
gamma-BHC (Lindane)	ND		4.42				
cis-Chlordane	ND		4.42				
trans-Chlordane	ND		4.42				
4,4'-DDD	ND		4.42				
4,4'-DDE	ND		4.42				
4,4'-DDT	ND		4.42				

Dieldrin	ND		4.42	 	
Endosulfan I	ND		4.42	 	
Endosulfan II	ND		4.42	 	
Endosulfan sulfate	ND		4.42	 	
Endrin	ND		4.42	 	
Endrin Aldehyde	ND		4.42	 	
Endrin ketone	ND		4.42		
Heptachlor	ND		4.42	 	
Heptachlor epoxide	ND		4.42	 	
Methoxychlor	ND		13.3	 	
Chlordane (Technical)	ND		133	 	
Toxaphene (Total)	ND		133	 	
Semivolatile Organic Compounds (ug/kg)	NB		133		
Acenaphthene	ND		2.74	 	
Acenaphthylene	ND		2.74	 	
Anthracene	ND		2.74	 	
Benz(a)anthracene	ND		2.74	 	
Benzo(a)pyrene	ND		4.1	 	
Benzo(b)fluoranthene	ND		4.1	 	
Benzo(k)fluoranthene	ND		4.1	 	
Benzo(g,h,i)perylene	ND		2.74	 	
Chrysene	ND		2.74	 	
Dibenz(a,h)anthracene	ND		2.74	 	
Fluoranthene	ND		2.74	 	
Fluorene	ND		2.74	 	
Indeno(1,2,3-cd)pyrene	ND		2.74	 	
1-Methylnaphthalene	ND		5.46	 	
2-Methylnaphthalene	ND		5.46	 	
Naphthalene	ND		5.46	 	
Phenanthrene	ND		2.74	 	
Pyrene	ND		2.74	 	
Carbazole	ND		4.10	 	
Dibenzofuran	ND		2.74	 	
4-Chloro-3-methylphenol	ND		27.4	 	
2-Chlorophenol	ND		13.6	 	
2,4-Dichlorophenol	ND		13.6	 	
2,4-Dimethylphenol	ND		13.6	 	
2,4-Dinitrophenol	ND		68.3	 	
4,6-Dinitro-2-methylphenol	ND		68.3	 	
2-Methylphenol	ND		6.83	 	
3+4-Methylphenol(s)	ND		6.83	 	
2-Nitrophenol	ND		27.4	 	
4-Nitrophenol	ND		27.4	 	
Pentachlorophenol (PCP)	ND		27.4	 	
Phenol	ND		5.46	 	
2,3,4,6-Tetrachlorophenol	+	-		 +	
[2,3,4,0-retractionophenor	ND		13.6	 	

2,4,5-Trichlorophenol	ND	 13.6		 l l	
2,4,6-Trichlorophenol	ND	 13.6		 	
Bis(2-ethylhexyl)phthalate	ND	 41		 	
Butyl benzyl phthalate	ND	 27.4		 	
Diethylphthalate	ND	 27.4		 	
Dimethylphthalate	ND	 27.4		 	
Di-n-butylphthalate	ND	 27.4		 	
Di-n-octyl phthalate	ND	 27.4		 	
N-Nitrosodimethylamine	ND	 6.83		 	
N-Nitroso-di-n-propylamine	ND	 6.83		 	
N-Nitrosodiphenylamine	ND	 6.83		 	
Bis(2-Chloroethoxy) methane	ND	 6.83		 	
Bis(2-Chloroethyl) ether	ND	 6.83		 	
Bis(2-Chloroisopropyl) ether	ND	 6.83		 	
Hexachlorobenzene	ND	 2.74		 	
Hexachlorobutadiene	ND	 6.83		 	
Hexachlorocyclopentadiene	ND	 13.6		 	
Hexachloroethane	ND	 6.83		 	
2-Chloronaphthalene	ND	 2.74		 	
1,2-Dichlorobenzene	ND	 6.83		 	
1,3-Dichlorobenzene	ND	 6.83		 	
1,4-Dichlorobenzene	ND	 6.83		 	
1,2,4-Trichlorobenzene	ND	 6.83		 	
4-Bromophenyl phenyl ether	ND	 6.83		 	
4-Chlorophenyl phenyl ether	ND	 6.83		 	
Aniline	ND	 13.6		 	
4-Chloroaniline	ND	 6.83		 	
2-Nitroaniline	ND	 54.6		 	
3-Nitroaniline	ND	 54.6		 	
4-Nitroaniline	ND	 54.6		 	
Nitrobenzene	ND	 27.4		 	
2,4-Dinitrotoluene	ND	 27.4		 	
2,6-Dinitrotoluene	ND	 27.4		 	
Benzoic acid	ND	 341		 	
Benzyl alcohol	ND	 13.6		 	
Isophorone	ND	 6.83		 	
Azobenzene (1,2-DPH)	ND	 6.83		 	
Bis(2-Ethylhexyl) adipate	ND	 68.3		 	
3,3'-Dichlorobenzidine	ND	 27.4		 	
1,2-Dinitrobenzene	ND	 68.3		 	
1,3-Dinitrobenzene	ND	 68.3		 	
1,4-Dinitrobenzene	ND	 68.3		 	
Pyridine	ND	 13.6		 	
Total Metals (mg/kg)	FO 6**	4.03	4 20	1.00	
Arsenic	59.0**	 1.02	4.29	 1.02	
Barium	74.4	 1.02		 	
Cadmium	ND	 0.205		 	

Chromium	9.69	 4.09		 	
Copper		 		 	
Lead	3.47	 0.205		 	
Manganese		 		 	
Mercury	ND	 0.0818		 	
Selenium	ND	 2.05		 	
Silver	ND	 0.205		 	
Zinc		 		 	

Notes:

BE	3-C Cor	np	ВЕ	B-N Cor	np		BB-	Γotal C	omp		Import Criteria
RESULT	DL	RL	RESULT	DL	RL		RESULT	DL	RL		•
											2.5
											2.5
											2.5
											2.5
											2.5
											2.5
											2.5
											2.5
											2.5
							-				2.5
											2.5
											2.5
											2.5
											0.5
											0.5
											5
											5
							ND		9.19		10
							ND		9.19		10
							ND		9.19		10
							ND		9.19		10
							ND		9.19		10
							ND		9.19		10
							ND		9.19		10
											-
							ND		1.8		5
							ND		1.8	-	5
							ND		1.8	_	5
						\vdash	ND		1.8		5
							ND		1.8		5
							ND		1.8		100
							ND		1.8		100
							ND		1.8	_	5
							ND		1.8		<u> </u>
							ND		1.8		5

1	T							
 			 		ND	 1.8		5
 			 		ND	 1.8		5
 			 		ND	 1.8		5
 			 		ND	 1.8		5
 			 		ND	 1.8		5
 			 		ND	 1.8		5
 			 		ND	 1.8		5
 			 		ND	 1.8		5
					ND	1.8		5
 			 		ND	 5.41		5
 			 		ND	 54.1		
 			 		ND	 54.1		250
 			 		ND	 2.65		330
 			 		ND	 2.65		330
 			 		ND	 2.65		330
 			 		ND	 2.65		330
 			 		ND	 3.97		330
 			 		ND	 3.97		
 			 		ND	 3.97		
 			 		ND	 2.65		330
 			 		ND	 2.65		330
					ND	2.65		330
							-	
 			 		ND	 2.65		330
 			 		ND	 2.65		330
 			 		ND	 2.65		330
 			 		ND	 5.29		10000
 			 		ND	 5.29		
 			 		ND	 5.29		330
 			 		ND	 2.65		330
 			 		ND	 2.65		330
 			 		ND	 3.97		
 			 		ND	 2.65		330
 			 		ND	 26.5		
 			 		ND	 13.2		
 			 		ND	 13.2		
 			 		ND	 13.2		330
 			 		ND	 66.2	\vdash	
 			 		ND	 66.2		
 			 		ND	 6.62		330
		-					\vdash	
 			 		ND	 6.62		330
 			 		ND	 26.5		2000
 		-	 		ND	 26.5		2000
 			 		ND	 26.5		
 			 		ND	 5.29		330
 			 		ND	 13.2		
 			 		ND	 13.2		

	 		 	ND	 13.2	
	 		 	ND	 39.7	330
	 		 	ND	 26.5	330
	 		 	ND	 26.5	330
	 		 	ND	 26.5	330
	 		 	ND	 26.5	330
	 		 	ND	 26.5	330
	 		 	ND	 6.62	
	 		 	ND	 6.62	
	 		 	ND	 6.62	330
	 		 	ND	 6.62	
	 		 	ND	 6.62	
	 		 	ND	 6.62	
	 		 	ND	 2.65	330
	 		 	ND	 6.62	330
	 		 	ND	 13.2	
	 		 	ND	 6.62	330
	 		 	ND	 2.65	
	 		 	ND	 6.62	330
	 		 	ND	 6.62	330
	 		 	ND	 6.62	330
	 		 	ND	 6.62	330
	 		 	ND	 6.62	
	 		 	ND	 6.62	
	 		 	ND	 13.2	
	 		 	ND	 6.62	
	 		 	ND	 52.9	
	 		 	ND	 52.9	
	 		 	ND	 52.9	
	 		 	ND	 26.5	
	 		 	ND	 26.5	
	 		 	ND	 26.5	
	 		 	ND	 330	2000
	 		 	ND	 13.2	330
	 		 	ND	 6.62	
	 		 	ND	 6.62	
	 		 	ND	 66.2	
	 		 	ND	 26.5	
	 		 	ND	 66.2	
	 		 	ND	 66.2	
	 		 	ND	 66.2	
	 		 	ND	 13.2	
4.42	1.04	1.16	1 10	2.01	1 10	0 0
4.43	 1.04	4.46	 1.10	3.91	 1.10	8.8
	 		 	ND	 0.22	0.63

 1				ı	1	•	
 		 		8.59		1.1	76
 		 		25.2		2.20	34
 1		 		3.36	-	0.22	79
 		 		323		1.10	1800
 		 		ND		0.0881	0.23
 		 		28.9		4.40	180

	LIVINGSTON G-:	Owl Creek BF ² (7/23/15)				
Analyte	RESULT	DL	RL	RESULT	DL	RL
Dioxins/Furans (pg/g)						
1,2,3,4,6,7,8-Hepta CDD	0.192	0.101	1.00			
1,2,3,4,6,7,8-Hepta CDF	ND	0.104	1.00			
1,2,3,4,7,8,9-Hepta CDF	ND	0.103	1.00			
1,2,3,4,7,8-Hexa CDD	ND	0.102	1.00			
1,2,3,4,7,8-Hexa CDF	ND	0.100	1.00			
1,2,3,6,7,8-Hexa CDD	ND	0.107	1.00			
1,2,3,6,7,8-Hexa CDF	ND	0.105	1.00			
1,2,3,7,8,9-Hexa CDD	ND	0.106	1.00			
1,2,3,7,8,9-Hexa CDF	ND	0.101	1.00			
1,2,3,7,8-Penta CDD	ND	0.103	1.00			
1,2,3,7,8-Penta CDF	ND	0.110	1.00			
2,3,4,6,7,8-Hexa CDF	ND	0.0949	1.00			
2,3,4,7,8-Penta CDF	ND	0.108	1.00			
2,3,7,8-Tetra CDD	0.726	0.108	0.200			
2,3,7,8-Tetra CDF	6.81 (7.20*)	0.100	0.200			
Octa CDD	0.783	0.105	2.00			
Octa CDF	ND	0.107	2.00			
Total Hepta CDD	0.327	0.101	1.00			
Total Hepta CDF	ND	0.104	1.00			
Total Hexa CDD	ND	0.106	1.00			
Total Hexa CDF	ND	0.100	1.00			
Total Penta CDD	ND	0.103	1.00			
Total Penta CDF	ND	0.109	1.00			
Total Tetra CDD	0.726	0.108	0.200			
Total Tetra CDF	11.7	0.100	0.200			
Polychlorinated Biphenyls (ug/kg)						
Aroclor 1016	ND		10.5	ND		9.96
Aroclor 1221	ND		10.5	ND		9.96
Aroclor 1232	ND		10.5	ND		9.96
Aroclor 1242	ND		10.5	ND		9.96
Aroclor 1248	ND		10.5	ND		9.96
Aroclor 1254	ND		10.5	ND		9.96
Aroclor 1260	ND		10.5	ND		9.96
Organochlorine Pesticides (ug/kg)						
Aldrin	ND		4.66	ND		0.996
alpha-BHC	ND		4.66	ND		0.996
beta-BHC	ND		4.66	ND		0.996
delta-BHC	ND		4.66	ND		0.996
gamma-BHC (Lindane)	ND		4.66	ND		0.996
cis-Chlordane	ND		4.66	ND		0.996

trans-Chlordane ND 4.66 ND 4,4'-DDD ND 4.66 ND 4,4'-DDE ND 4.66 ND 4,4'-DDT ND 4.66 ND Dieldrin ND 4.66 ND Endosulfan I ND 4.66 ND Endosulfan Sulfate ND 4.66 ND Endrin ND 4.66 ND Endrin Aldehyde ND 4.66 ND Endrin ketone ND 4.66 ND Heptachlor ND 4.66 ND Heptachlor epoxide ND 4.66 ND Heptachlor epoxide ND 4.66 ND Methoxychlor ND<	0.996 0.996 0.996 0.996 0.996 0.996
4,4'-DDE ND 4.66 ND 4,4'-DDT ND 4.66 ND Dieldrin ND 4.66 ND Endosulfan I ND 4.66 ND Endosulfan sulfate ND 4.66 ND Endrin ND 4.66 ND Endrin Aldehyde ND 4.66 ND Endrin ketone ND 4.66 ND Endrin ketone ND 4.66 ND Heptachlor ND 4.66 ND Heptachlor epoxide ND 4.66 ND Methoxychlor ND 4.66 ND Methoxychlor ND 14 ND Chlordane (Technical)	0.996 0.996 0.996 0.996
4,4'-DDT ND 4.66 ND Dieldrin ND 4.66 ND Endosulfan II ND 4.66 ND Endosulfan sulfate ND 4.66 ND Endrin ND 4.66 ND Endrin Aldehyde ND 4.66 ND Heptachlor ND 4.66 ND Heptachlor ND 4.66 ND Methoxychlor ND 14 ND	0.996 0.996 0.996
Dieldrin ND 4.66 ND Endosulfan I ND 4.66 ND Endosulfan sulfate ND 4.66 ND Endrin ND 4.66 ND Endrin Aldehyde ND 4.66 ND Endrin ketone ND 4.66 ND Heptachlor ND 4.66 ND Heptachlor ND 4.66 ND Heptachlor epoxide ND 4.66 ND Methoxychlor ND 14 ND Chlordane (Technical)	0.996 0.996
Endosulfan I ND 4.66 ND Endosulfan II ND 4.66 ND Endosulfan sulfate ND 4.66 ND Endrin ND 4.66 ND Endrin Aldehyde ND 4.66 ND Endrin ketone ND 4.66 ND Heptachlor ND 4.66 ND Heptachlor epoxide ND 4.66 ND Heptachlor epoxide ND 4.66 ND Methoxychlor ND 4.66 ND Methoxychlor ND 14 ND Chlordane (Technical) ND 140 ND Toxaphene (Total) ND 140 ND Semivolat	0.996
Endosulfan II ND 4.66 ND Endrin ND 4.66 ND Endrin ND 4.66 ND Endrin Aldehyde ND 4.66 ND Endrin ketone ND 4.66 ND Heptachlor ND 4.66 ND Heptachlor epoxide ND 4.66 ND Methoxychlor ND 4.66 ND Methoxychlor ND 14 ND Chlordane (Technical) ND 140 ND Toxaphene (Total) ND 140 ND Semivolatile Organic Compounds (ug/kg) 2.82 ND Acenaphthene ND 2.82 ND Anthracene	_
Endosulfan sulfate ND 4.66 ND Endrin ND 4.66 ND Endrin Aldehyde ND 4.66 ND Endrin ketone ND 4.66 ND Heptachlor ND 4.66 ND Heptachlor epoxide ND 4.66 ND Methoxychlor ND 4.66 ND Methoxychlor ND 14 ND Methoxychlor ND 140 ND Chlordane (Technical) ND 140 ND Toxaphene (Total) ND 140 ND Semivolatile Organic Compounds (ug/kg) 2.82 ND Acenaphthene ND 2.82 ND Anthracene<	0.996
Endrin ND 4.66 ND Endrin Aldehyde ND 4.66 ND Endrin ketone ND 4.66 ND Heptachlor ND 4.66 ND Heptachlor epoxide ND 4.66 ND Methoxychlor ND 14 ND Chlordane (Technical) ND 140 ND Toxaphene (Total) ND 140 ND Semivolatile Organic Compounds (ug/kg) 140 ND Acenaphthene ND 2.82 ND Acenaphthylene ND 2.82 ND Anthracene ND 2.82 ND Benzo(a)pyrene ND 4.23 ND Benzo(b)fluoran	
Endrin Aldehyde ND 4.66 ND Endrin ketone ND 4.66 ND Heptachlor ND 4.66 ND Heptachlor epoxide ND 4.66 ND Methoxychlor ND 14 ND Chlordane (Technical) ND 140 ND Toxaphene (Total) ND 140 ND Semivolatile Organic Compounds (ug/kg) ND 2.82 ND Acenaphthene ND 2.82 ND Acenaphthylene ND 2.82 ND Anthracene ND 2.82 ND Benzo(a)pyrene ND 4.23 ND Benzo(b)fluoranthene ND 4.23 ND	0.996
Endrin ketone ND 4.66 ND Heptachlor ND 4.66 ND Heptachlor epoxide ND 4.66 ND Methoxychlor ND 14 ND Chlordane (Technical) ND 140 ND Toxaphene (Total) ND 140 ND Semivolatile Organic Compounds (ug/kg) ND 2.82 ND Acenaphthene ND 2.82 ND Acenaphthylene ND 2.82 ND Anthracene ND 2.82 ND Benzo(a)pyrene ND 4.23 ND Benzo(b)fluoranthene ND 4.23 ND Benzo(k)fluoranthene ND 4.23 ND </td <td>0.996</td>	0.996
Heptachlor	0.996
Heptachlor epoxide ND 4.66 ND Methoxychlor ND 14 ND Chlordane (Technical) ND 140 ND Toxaphene (Total) ND 140 ND Semivolatile Organic Compounds (ug/kg) ND 2.82 ND Acenaphthene ND 2.82 ND Anthracene ND 2.82 ND Benzo(a)anthracene ND 4.23 ND Benzo(b)fluoranthene ND 4.23 ND Benzo(k)fluoranthene ND 4.23 ND	0.996
Methoxychlor ND 14 ND Chlordane (Technical) ND 140 ND Toxaphene (Total) ND 140 ND Semivolatile Organic Compounds (ug/kg) ND 2.82 ND Acenaphthene ND 2.82 ND Anthracene ND 2.82 ND Benz(a)anthracene ND 2.82 ND Benzo(b)fluoranthene ND 4.23 ND Benzo(k)fluoranthene ND 4.23 ND	0.996
Chlordane (Technical) ND 140 ND Toxaphene (Total) ND 140 ND Semivolatile Organic Compounds (ug/kg) ND 2.82 ND Acenaphthene ND 2.82 ND Acenaphthylene ND 2.82 ND Anthracene ND 2.82 ND Benzo(a)anthracene ND 4.23 ND Benzo(b)fluoranthene ND 4.23 ND Benzo(k)fluoranthene ND 4.23 ND	0.996
Toxaphene (Total) ND 140 ND Semivolatile Organic Compounds (ug/kg) ND 2.82 ND Acenaphthene ND 2.82 ND Acenaphthylene ND 2.82 ND Anthracene ND 2.82 ND Benz(a)anthracene ND 2.82 ND Benzo(a)pyrene ND 4.23 ND Benzo(b)fluoranthene ND 4.23 ND Benzo(k)fluoranthene ND 4.23 ND	2.99
Semivolatile Organic Compounds (ug/kg) ND 2.82 ND Acenaphthene ND 2.82 ND Acenaphthylene ND 2.82 ND Anthracene ND 2.82 ND Benz(a)anthracene ND 2.82 ND Benzo(a)pyrene ND 4.23 ND Benzo(b)fluoranthene ND 4.23 ND Benzo(k)fluoranthene ND 4.23 ND	29.9
Acenaphthene ND 2.82 ND Acenaphthylene ND 2.82 ND Anthracene ND 2.82 ND Benz(a)anthracene ND 2.82 ND Benzo(a)pyrene ND 4.23 ND Benzo(b)fluoranthene ND 4.23 ND Benzo(k)fluoranthene ND 4.23 ND	29.9
Acenaphthylene ND 2.82 ND Anthracene ND 2.82 ND Benz(a)anthracene ND 2.82 ND Benzo(a)pyrene ND 4.23 ND Benzo(b)fluoranthene ND 4.23 ND Benzo(k)fluoranthene ND 4.23 ND	
Anthracene ND 2.82 ND Benz(a)anthracene ND 2.82 ND Benzo(a)pyrene ND 4.23 ND Benzo(b)fluoranthene ND 4.23 ND Benzo(k)fluoranthene ND 4.23 ND	249
Benz(a)anthracene ND 2.82 ND Benzo(a)pyrene ND 4.23 ND Benzo(b)fluoranthene ND 4.23 ND Benzo(k)fluoranthene ND 4.23 ND	249
Benzo(a)pyrene ND 4.23 ND Benzo(b)fluoranthene ND 4.23 ND Benzo(k)fluoranthene ND 4.23 ND	249
Benzo(b)fluoranthene ND 4.23 ND Benzo(k)fluoranthene ND 4.23 ND	249
Benzo(k)fluoranthene ND 4.23 ND	249
	249
Benzo(g,h,i)perylene ND 2.82 ND	249
	249
Chrysene ND 2.82 ND	249
Dibenz(a,h)anthracene ND 2.82 ND	249
Fluoranthene ND 2.82 ND	249
Fluorene ND 2.82 ND	249
Indeno(1,2,3-cd)pyrene ND 2.82 ND	249
1-Methylnaphthalene ND 5.64 ND	249
2-Methylnaphthalene ND 5.64 ND	249
Naphthalene ND 5.64 ND	249
Phenanthrene ND 2.82 ND	249
Pyrene ND 2.82 ND	249
Carbazole ND 4.23 ND	249
Dibenzofuran ND 2.82 ND	249
4-Chloro-3-methylphenol ND 28.2 ND	249
2-Chlorophenol ND 14.1 ND	249
2,4-Dichlorophenol	249
2,4-Dimethylphenol	249
2,4-Dinitrophenol ND 70.5 ND	249
4,6-Dinitro-2-methylphenol ND 70.5 ND	
2-Methylphenol ND 7.05 ND	598

3+4-Methylphenol(s)	ND	 7.05	ND	 249
2-Nitrophenol	ND	 28.2	ND	 249
4-Nitrophenol	ND	 28.2	ND	 249
Pentachlorophenol (PCP)	ND	 28.2	ND	 249
Phenol	ND	 5.64	ND	 249
2,3,4,6-Tetrachlorophenol	ND	 14.1	ND	 249
2,3,5,6-Tetrachlorophenol	ND	 14.8	ND	 249
2,4,5-Trichlorophenol	ND	 14.1	ND	 249
2,4,6-Trichlorophenol	ND	 14.1	ND	 249
Bis(2-ethylhexyl)phthalate	ND	 42.3	ND	 249
Butyl benzyl phthalate	ND	 28.2	ND	 249
Diethylphthalate	ND	 28.2	ND	 249
Dimethylphthalate	ND	 28.2	ND	 249
Di-n-butylphthalate	ND	 28.2	ND	 249
Di-n-octyl phthalate	ND	 28.2	ND	 249
N-Nitrosodimethylamine	ND	 7.05	ND	 249
N-Nitroso-di-n-propylamine	ND	 7.05	ND	 249
N-Nitrosodiphenylamine	ND	 7.05	ND	 249
Bis(2-Chloroethoxy) methane	ND	 7.05	ND	 249
Bis(2-Chloroethyl) ether	ND	 7.05	ND	 249
Bis(2-Chloroisopropyl) ether	ND	 7.05	ND	 249
Hexachlorobenzene	ND	 2.82	ND	 249
Hexachlorobutadiene	ND	 7.05	ND	 249
Hexachlorocyclopentadiene	ND	 14.1	ND	 249
Hexachloroethane	ND	 7.05	ND	 249
2-Chloronaphthalene	ND	 2.82	ND	 249
1,2-Dichlorobenzene	ND	 7.05	ND	 249
1,3-Dichlorobenzene	ND	 7.05	ND	 249
1,4-Dichlorobenzene	ND	 7.05	ND	 249
1,2,4-Trichlorobenzene	ND	 7.05	ND	 249
4-Bromophenyl phenyl ether	ND	 7.05	ND	 249
4-Chlorophenyl phenyl ether	ND	 7.05	ND	 249
Aniline	ND	 14.1	ND	 249
4-Chloroaniline	ND	 7.05	ND	 249
2-Nitroaniline	ND	 56.4	ND	 249
3-Nitroaniline	ND	 56.4	ND	 249
4-Nitroaniline	ND	 56.4	ND	 249
Nitrobenzene	ND	 28.2	ND	 249
2,4-Dinitrotoluene	ND	 28.2	ND	 249
2,6-Dinitrotoluene	ND	 28.2	ND	 249
Benzoic acid	ND	 352	ND	 1250
	ND			
Benzyl alcohol	ND ND	 14.1	ND	 249
Benzyl alcohol Isophorone			ND ND	

Bis(2-Ethylhexyl) adipate	ND	 70.5	ND	 249
3,3'-Dichlorobenzidine	ND	 28.2	ND	 249
1,2-Dinitrobenzene	ND	 70.5	ND	 249
1,3-Dinitrobenzene	ND	 70.5	ND	 249
1,4-Dinitrobenzene	ND	 70.5	ND	 249
Pyridine	ND	 14.1	ND	 498
Total Metals (mg/kg)				
Arsenic	1.65	 1.10	ND	 1.03
Barium	59.4	 1.10		
Cadmium	ND	 0.221	ND	 0.206
Chromium	ND	 4.42	3.88	 1.03
Copper	24.5	 1.10	11.7	 1.03
Lead	2.5	 0.221	ND	 1.03
Manganese	210	 1.10	145	 1.03
Mercury	ND	 0.0884	ND	 0.165
Selenium	ND	 2.21		
Silver	ND	 0.221		
Zinc	33.3	 4.42	17.1	 4.11
¹ Results from initial source of identified berm	 material			
² Results from second source of identified bern	n material			
		I I		ı

Import Criteria				
2.5				
2.5				
2.5				
2.5				
2.5				
2.5				
2.5				
2.5				
2.5				
2.5				
2.5				
2.5				
2.5				
0.5				
0.5				
5				
5				
10				
10				
10				
10				
10				
10				
10				
5				
5				
5				
5 5				
5				
100				
100				

100				
5				
5				
5 5 5 5				
5 5				
5				
5 5 5				
5				
5				
5 5				
5				
5 5				
250				
330				
330				
330				
330				
330				
330				
330				
330				
330				
330				
330				
10000				
330				
330				
330				
330				
330				
330				

330				
2000				
330				
330				
330				
330				
330				
330				
330				
330				
330				
330				
330				
330				
330				
330				
330				
2000				
2000				
330				

8.8				
0.63				
76				
34				
79				
1800				
0.23				
180				

			•		
ļ					
ļ					
	 <u> </u>	 	 		
<u> </u>					
	1		l.	ı	

	•	•		•	
			<u> </u>		
1					

L				

	•	•		•	
			<u> </u>		
1					

	•	•		•	
			<u> </u>		
1					

<u> </u>					
		<u> </u>		 	
<u> </u>					
[
[\neg
I 7					
<u> </u>					
<u> </u>					
[
			t.		

-				

-				

	•	•		•	
			<u> </u>		
ı					

Berm Soil only

			1 1/2" (CRUSHED ROCK	
	LIVINGSTO	ON G-121	ODOT 1½	LIVINGSTON (
Analyte	RESULT	DL	RL	RESULT	DL
Dioxins/Furans (pg/g)					
1,2,3,4,6,7,8-Hepta CDD	0.144	0.111	1.00		
1,2,3,4,6,7,8-Hepta CDF	ND	0.106	1.00		
1,2,3,4,7,8,9-Hepta CDF	ND	0.105	1.00		
1,2,3,4,7,8-Hexa CDD	ND	0.113	1.00		
1,2,3,4,7,8-Hexa CDF	ND	0.0600	1.00		
1,2,3,6,7,8-Hexa CDD	ND	0.118	1.00		
1,2,3,6,7,8-Hexa CDF	ND	0.063	1.00		
1,2,3,7,8,9-Hexa CDD	ND	0.117	1.00		
1,2,3,7,8,9-Hexa CDF	ND	0.060	1.00		
1,2,3,7,8-Penta CDD	ND	0.117	1.00		
1,2,3,7,8-Penta CDF	ND	0.109	1.00		
2,3,4,6,7,8-Hexa CDF	ND	0.057	1.00		
2,3,4,7,8-Penta CDF	ND	0.106	1.00		
2,3,7,8-Tetra CDD	ND	0.109	0.200		
2,3,7,8-Tetra CDF	ND	0.078	0.200		
Octa CDD	0.746	0.171	2.00		
Octa CDF	ND	0.101	2.00		
Total Hepta CDD	0.291	0.111	1.00		
Total Hepta CDF	0.226	0.106	1.00		
Total Hexa CDD	ND	0.117	1.00		
Total Hexa CDF	ND	0.0598	1.00		
Total Penta CDD	ND	0.117	1.00		
Total Penta CDF	ND	0.107	1.00		
Total Tetra CDD	ND	0.109	0.200		
Total Tetra CDF	ND	0.0779	0.200		
Polychlorinated Biphenyls (ug/kg)					
Aroclor 1016	ND		10.3		
Aroclor 1221	ND		10.3		
Aroclor 1232	ND		10.3		
Aroclor 1242	ND		10.3		
Aroclor 1248	ND		10.3		
Aroclor 1254	ND		10.3		
Aroclor 1260	ND		10.3		
Organochlorine Pesticides (ug/kg)					
Aldrin	ND		4.82		
alpha-BHC	ND		4.82		
beta-BHC	ND		4.82		
delta-BHC	ND		4.82		

gamma-BHC (Lindane)	ND	 4.82	
cis-Chlordane	ND	 4.82	
trans-Chlordane	ND	 4.82	
4,4'-DDD	ND	 4.82	
4,4'-DDE	ND	 4.82	
4,4'-DDT	ND	 4.82	
Dieldrin	ND	 4.82	
Endosulfan I	ND	 4.82	
Endosulfan II	ND	 4.82	
Endosulfan sulfate	ND	 4.82	
Endrin	ND	 4.82	
Endrin Aldehyde	ND	 4.82	
Endrin ketone	ND	 4.82	
Heptachlor	ND	 4.82	
Heptachlor epoxide	ND	 4.82	
Methoxychlor	ND	 14.5	
Chlordane (Technical)	ND	 145	
Toxaphene (Total)	ND	 145	
Semivolatile Organic Compounds (ug/kg)			
Acenaphthene	ND	 2.79	
Acenaphthylene	ND	 2.79	
Anthracene	ND	 2.79	
Benz(a)anthracene	ND	 2.79	
Benzo(a)pyrene	ND	 4.18	
Benzo(b)fluoranthene	ND	 4.18	
Benzo(k)fluoranthene	ND	 4.18	
Benzo(g,h,i)perylene	ND	 2.79	
Chrysene	ND	 2.79	
Dibenz(a,h)anthracene	ND	 2.79	
Fluoranthene	ND	 2.79	
Fluorene	ND	 2.79	
Indeno(1,2,3-cd)pyrene	ND	 2.79	
1-Methylnaphthalene	ND	 5.57	
2-Methylnaphthalene	ND	 5.57	
Naphthalene	ND	 5.57	
Phenanthrene	ND	 2.79	
Pyrene	ND	 2.79	
Carbazole	ND	 4.18	
Dibenzofuran	ND	 2.79	
4-Chloro-3-methylphenol	ND	 27.9	
2-Chlorophenol	ND	 13.9	
2,4-Dichlorophenol	ND	 13.9	
2,4-Dimethylphenol	ND	 13.9	
2,4-Dinitrophenol	ND	 69.7	

1			 ,
4,6-Dinitro-2-methylphenol	ND	 69.7	
2-Methylphenol	ND	 6.97	
3+4-Methylphenol(s)	ND	 6.97	
2-Nitrophenol	ND	 27.9	
4-Nitrophenol	ND	 27.9	
Pentachlorophenol (PCP)	ND	 5.57	
Phenol	ND	 5.57	
2,3,4,6-Tetrachlorophenol	ND	13.9	
2,3,5,6-Tetrachlorophenol	ND	 14.6	
2,4,5-Trichlorophenol	ND	13.9	
2,4,6-Trichlorophenol	ND	 13.9	
Bis(2-ethylhexyl)phthalate	ND	 41.8	
Butyl benzyl phthalate	ND	 27.9	
Diethylphthalate	ND	 27.9	
Dimethylphthalate	ND	 27.9	
Di-n-butylphthalate	ND	 27.9	
Di-n-octyl phthalate	ND	 27.9	
N-Nitrosodimethylamine	ND	 6.97	
N-Nitroso-di-n-propylamine	ND	 6.97	
N-Nitrosodiphenylamine	ND	 6.97	
Bis(2-Chloroethoxy) methane	ND	 6.97	
Bis(2-Chloroethyl) ether	ND	 6.97	
Bis(2-Chloroisopropyl) ether	ND	 6.97	
Hexachlorobenzene	ND	 2.79	
Hexachlorobutadiene	ND	 6.97	
Hexachlorocyclopentadiene	ND	 13.9	
Hexachloroethane	ND	 6.97	
2-Chloronaphthalene	ND	 2.79	
1,2-Dichlorobenzene	ND	 6.97	
1,3-Dichlorobenzene	ND	 6.97	
1,4-Dichlorobenzene	ND	 6.97	
1,2,4-Trichlorobenzene	ND	 6.97	
4-Bromophenyl phenyl ether	ND	 6.97	
4-Chlorophenyl phenyl ether	ND	 6.97	
Aniline	ND	 13.9	
4-Chloroaniline	ND	 6.97	
2-Nitroaniline	ND	 55.7	
3-Nitroaniline	ND	 55.7	
4-Nitroaniline	ND	 55.7	
Nitrobenzene	ND	 27.9	
2,4-Dinitrotoluene	ND	 27.9	
2,6-Dinitrotoluene	ND	 27.9	
Benzoic acid	ND	 348	
Benzyl alcohol	ND	 13.9	
'			

Isophorone	ND		6.97			
Azobenzene (1,2-DPH)	ND		6.97			
Bis(2-Ethylhexyl) adipate	ND		69.7			
3,3'-Dichlorobenzidine	ND		27.9			
1,2-Dinitrobenzene	ND		69.7			
1,3-Dinitrobenzene	ND		69.7			
1,4-Dinitrobenzene	ND		69.7			
Pyridine	ND		13.9			
Total Metals (mg/kg)						
Arsenic	1.02		1.02			
Barium	41.8		1.02			
Cadmium	0.234		0.203			
Chromium	ND		4.06			
Copper	98.2		1.02	100/115/90.4		
Lead	2.42		0.203			
Manganese	204		1.02			
Mercury	ND		0.0813			
Selenium	ND		2.03			
Silver	ND		0.203			
Zinc	30.0		1.60			
Notes:						
	*	= confir	mation resul	t		
		= exceed	ds Import Cri	iteria		
	ND	= not de	tected			
		reanalysis of a second aliquot from the sar				
		composite samples were then collected fron				
	**	concentrations were 4.29, 4.43 and 4.46 mg/				
		copper, zinc and manganese results a copper				
	1	Results	from initial s	ource of berm ma	aterial id	
	2			source of berm r		
		courts	. 5 5000110	554.55 51 5511111		

OT 1½" E					
	Import Criteria				
Comp RL	import criteria				
NL NL					
	2.5				
	2.5				
	2.5				
	2.5				
	2.5				
	2.5				
	2.5				
	2.5				
	2.5				
	2.5				
	2.5				
	2.5				
	2.5				
	2.5				
	0.5				
	0.5				
	5				
	5				
	10				
	10				
	10				
	10				
	10				
	10				
	10	-			
	10				
	5				
	5	-			
	5				
	5	-			
] 5				

 5					
 100					
 100					
 5					
 250					
 330					
 330					
 10000					
 330					
 330					
 330					
 330					
 330					
 •	i .	i	1	1	

1		1	
 330			
 330			
 2000			
 330			
 330			
 330			
 330			
 330			
 330			
 330			
 330			
 2000			
330			
 330			

	8.8							
	0.63							
	76							
1.02	34							
	79							
	1800							
	0.23							
	180							
ample was	4.45. Three 5-point							
	I and the resulting arsenic							
g. Laboratory reports from these								
	anganese results are not on ta	ble; supplie	er indicates	results met	criteria an	d will be pro	viding labo	
entified							-	
dentified								
acmined								

			Ī	T	
<u></u>					
	 -				·

				•	
	 	-			
—					

				•	
	 	-			
—					

ratory repo	ort				
, ,					

[
<u> </u>					
[
<u> </u>					
[
<u> </u>					
[
<u> </u>					
l	 		 		
<u> </u>					
	l .			l .	

				•	
	 	-			
—					

	ı	I		I	

[
<u> </u>					
[
<u> </u>					
[
<u> </u>					
[
<u> </u>					
l	 		 		
<u> </u>					
	l .			l .	

				•	
	 	-			
—					

				•	
	 	-			
—					

	Ī		Ī	T	
<u></u>			 		

				•	
	 	-			
—					

 	<u> </u>	 	 	
	1			

	ı	I		I	

		T	Т	T		T	T	
	-				-			
<u> </u>								
-		1				1	1	

				•	
	 	-			
—					

				•	
	 	-			
—					

				•	
	 	-			
—					

1.5 in Crushed only

1.5 in Crushed only

-		
<u> </u>		

			1
 			
 			
l		l	l .

		•	1 1/2" (CRUSHED ROCK		
	LIVINGSTO	ON G-121	ODOT 1½	LIVINGSTON G-121 O Comp/C Comp/W		
		Grab	0.01.1/1		mposite	
Analyte	RESULT	DL	RL	RESULT	DL	
Dioxins/Furans (pg/g)						
1,2,3,4,6,7,8-Hepta CDD	0.144	0.111	1.00			
1,2,3,4,6,7,8-Hepta CDF	ND	0.106	1.00			
1,2,3,4,7,8,9-Hepta CDF	ND	0.105	1.00			
1,2,3,4,7,8-Hexa CDD	ND	0.113	1.00			
1,2,3,4,7,8-Hexa CDF	ND	0.0600	1.00			
1,2,3,6,7,8-Hexa CDD	ND	0.118	1.00			
1,2,3,6,7,8-Hexa CDF	ND	0.063	1.00			
1,2,3,7,8,9-Hexa CDD	ND	0.117	1.00			
1,2,3,7,8,9-Hexa CDF	ND	0.060	1.00			
1,2,3,7,8-Penta CDD	ND	0.117	1.00			
1,2,3,7,8-Penta CDF	ND	0.109	1.00			
2,3,4,6,7,8-Hexa CDF	ND	0.057	1.00			
2,3,4,7,8-Penta CDF	ND	0.106	1.00			
2,3,7,8-Tetra CDD	ND	0.109	0.200			
2,3,7,8-Tetra CDF	ND	0.078	0.200			
Octa CDD	0.746	0.171	2.00			
Octa CDF	ND	0.101	2.00			
Total Hepta CDD	0.291	0.111	1.00			
Total Hepta CDF	0.226	0.106	1.00			
Total Hexa CDD	ND	0.117	1.00			
Total Hexa CDF	ND	0.0598	1.00			
Total Penta CDD	ND	0.117	1.00			
Total Penta CDF	ND	0.107	1.00			
Total Tetra CDD	ND	0.109	0.200			
Total Tetra CDF	ND	0.0779	0.200			
Polychlorinated Biphenyls (ug/kg)						
Aroclor 1016	ND		10.3			
Aroclor 1221	ND		10.3			
Aroclor 1232	ND		10.3			
Aroclor 1242	ND		10.3			
Aroclor 1248	ND		10.3			
Aroclor 1254	ND		10.3			
Aroclor 1260	ND		10.3			
Organochlorine Pesticides (ug/kg)						
Aldrin	ND		4.82			
alpha-BHC	ND		4.82			
beta-BHC	ND		4.82			

<u></u>			
delta-BHC	ND	 4.82	
gamma-BHC (Lindane)	ND	 4.82	
cis-Chlordane	ND	 4.82	
trans-Chlordane	ND	 4.82	
4,4'-DDD	ND	 4.82	
4,4'-DDE	ND	 4.82	
4,4'-DDT	ND	 4.82	
Dieldrin	ND	 4.82	
Endosulfan I	ND	 4.82	
Endosulfan II	ND	 4.82	
Endosulfan sulfate	ND	 4.82	
Endrin	ND	 4.82	
Endrin Aldehyde	ND	 4.82	
Endrin ketone	ND	 4.82	
Heptachlor	ND	 4.82	
Heptachlor epoxide	ND	 4.82	
Methoxychlor	ND	 14.5	
Chlordane (Technical)	ND	 145	
Toxaphene (Total)	ND	 145	
Semivolatile Organic Compounds (ug/kg)			
Acenaphthene	ND	 2.79	
Acenaphthylene	ND	 2.79	
Anthracene	ND	 2.79	
Benz(a)anthracene	ND	 2.79	
Benzo(a)pyrene	ND	 4.18	
Benzo(b)fluoranthene	ND	 4.18	
Benzo(k)fluoranthene	ND	 4.18	
Benzo(g,h,i)perylene	ND	 2.79	
Chrysene	ND	 2.79	
Dibenz(a,h)anthracene	ND	 2.79	
Fluoranthene	ND	 2.79	
Fluorene	ND	 2.79	
Indeno(1,2,3-cd)pyrene	ND	 2.79	
1-Methylnaphthalene	ND	 5.57	
2-Methylnaphthalene	ND	 5.57	
Naphthalene	ND	 5.57	
Phenanthrene	ND	 2.79	
Pyrene	ND	 2.79	
Carbazole	ND	 4.18	
Dibenzofuran	ND	 2.79	
4-Chloro-3-methylphenol	ND	 27.9	
2-Chlorophenol	ND	 13.9	
2,4-Dichlorophenol	ND	 13.9	
2,4-Dimethylphenol	ND	 13.9	
· · · · · · · · · · · · · · · · · · ·	•		

	ı	ı			
2,4-Dinitrophenol	ND		69.7		
4,6-Dinitro-2-methylphenol	ND		69.7		
2-Methylphenol	ND		6.97		
3+4-Methylphenol(s)	ND		6.97		
2-Nitrophenol	ND		27.9		
4-Nitrophenol	ND		27.9		
Pentachlorophenol (PCP)	ND		5.57		
Phenol	ND		5.57		
2,3,4,6-Tetrachlorophenol	ND		13.9		
2,3,5,6-Tetrachlorophenol	ND		14.6		
2,4,5-Trichlorophenol	ND		13.9		
2,4,6-Trichlorophenol	ND		13.9		
Bis(2-ethylhexyl)phthalate	ND		41.8		
Butyl benzyl phthalate	ND		27.9		
Diethylphthalate	ND		27.9		
Dimethylphthalate	ND		27.9		
Di-n-butylphthalate	ND		27.9		
Di-n-octyl phthalate	ND		27.9		
N-Nitrosodimethylamine	ND		6.97		
N-Nitroso-di-n-propylamine	ND		6.97		
N-Nitrosodiphenylamine	ND		6.97		
Bis(2-Chloroethoxy) methane	ND		6.97		
Bis(2-Chloroethyl) ether	ND		6.97		
Bis(2-Chloroisopropyl) ether	ND		6.97		
Hexachlorobenzene	ND		2.79		
Hexachlorobutadiene	ND		6.97		
Hexachlorocyclopentadiene	ND		13.9		
Hexachloroethane	ND		6.97		
2-Chloronaphthalene	ND		2.79		
1,2-Dichlorobenzene	ND		6.97		
1,3-Dichlorobenzene	ND		6.97		
1,4-Dichlorobenzene	ND		6.97		
1,2,4-Trichlorobenzene	ND		6.97		
4-Bromophenyl phenyl ether	ND		6.97		
4-Chlorophenyl phenyl ether	ND		6.97		
Aniline	ND		13.9		
4-Chloroaniline	ND		6.97		
2-Nitroaniline	ND		55.7		
3-Nitroaniline	ND		55.7		
4-Nitroaniline	ND		55.7		
Nitrobenzene	ND		27.9		
2,4-Dinitrotoluene	ND		27.9		
2,6-Dinitrotoluene	ND		27.9		
Benzoic acid	ND		348		
I—————————————————————————————————————				•	

Benzyl alcohol	ND		13.9			
Isophorone	ND		6.97			
Azobenzene (1,2-DPH)	ND		6.97			
Bis(2-Ethylhexyl) adipate	ND		69.7			
3,3'-Dichlorobenzidine	ND		27.9			
1,2-Dinitrobenzene	ND		69.7			
1,3-Dinitrobenzene	ND		69.7			
1,4-Dinitrobenzene	ND		69.7			
Pyridine	ND		13.9			
Total Metals (mg/kg)						
Arsenic	1.02		1.02			
Barium	41.8		1.02			
Cadmium	0.234		0.203			
Chromium	ND		4.06			
Copper	98.2		1.02	100/115/90.4		
Lead	2.42		0.203			
Manganese	204		1.02			
Mercury	ND		0.0813			
Selenium	ND		2.03			
Silver	ND		0.203			
Zinc	30.0		1.60			
Notes:						
	*		mation resul			
			ds Import Cr	iteria		
	ND	= not de	etected			
		_	•	sult reported by la		
	**	·		alyses have not ye		
			zinc and ma	nganese results a	copper,	
	1	Results	from initial s	source of identific	ed berm	
	² Results from second source of identified be					
	3	All beac	h backfill res	sults are from the	same so	

OOT 1½" E Comp									
	LIVINGSTON G-1	(7	Creek	5)	DAYBREAK G-109 BEACH BACK				
DI			DI		mposi		DECLUT	Grab	DI
RL	RESULT	DL	RL	RESULT	DL	RL	RESULT	DL	RL
	0.402	0.404	4.00				0.200	0.0050	1.00
	0.192	0.101	1.00				0.300	0.0950	1.00
	ND	0.104	1.00				ND	0.0760	1.00
	ND	0.103	1.00				ND	0.0757	1.00
	ND	0.102	1.00				ND	0.108	1.00
	ND	0.100	1.00				ND	0.0891	1.00
	ND	0.107	1.00				ND	0.113	1.00
	ND	0.105	1.00				ND	0.0929	1.00
	ND	0.106	1.00				ND	0.113	1.00
	ND	0.101	1.00				ND	0.0898	1.00
	ND	0.103	1.00				ND	0.0948	1.00
	ND	0.110	1.00				ND	0.0948	1.00
	ND	0.0949	1.00				ND	0.0842	1.00
	ND	0.108	1.00				ND	0.0923	1.00
	0.726	0.108	0.200				ND	0.109	0.200
	6.81 (7.20*)	0.100	0.200				ND	0.101	0.200
	0.783	0.105	2.00				1.45	0.199	2.00
	ND	0.107	2.00				ND	0.200	2.00
	0.327	0.101	1.00				0.564	0.0950	1.00
	ND	0.104	1.00				0.0901	0.0758	1.00
	ND	0.106	1.00				0.128	0.112	1.00
	ND	0.100	1.00				ND	0.0889	1.00
	ND	0.103	1.00				ND	0.0948	1.00
	ND	0.109	1.00				ND	0.0936	1.00
	0.726	0.108	0.200				ND	0.109	0.200
	11.7	0.100	0.200				ND	0.101	0.200
	ND		10.5	ND		9.96	ND		10.2
	ND		10.5	ND		9.96	ND		10.2
	ND		10.5	ND		9.96	ND		10.2
	ND		10.5	ND		9.96	ND		10.2
	ND		10.5	ND		9.96	ND		10.2
	ND		10.5	ND		9.96	ND		10.2
	ND		10.5	ND		9.96	ND		10.2
						2.30	1,12		
	ND		4.66	ND		0.996	ND		4.42
	ND ND		4.66	ND		0.996	ND		4.42
	ND ND		4.66	ND		0.996	ND		4.42

 ND	 4.66		ND	 0.996	ND	 4.42
 ND	 4.66		ND	 0.996	ND	 4.42
 ND	 4.66		ND	 0.996	ND	 4.42
 ND	 4.66		ND	 0.996	ND	 4.42
 ND	 4.66		ND	 0.996	ND	 4.42
 ND	 4.66		ND	 0.996	ND	 4.42
 ND	 4.66		ND	 0.996	ND	 4.42
 ND	 4.66		ND	 0.996	ND	 4.42
 ND	 4.66		ND	 0.996	ND	 4.42
 ND	 4.66		ND	 0.996	ND	 4.42
 ND	 4.66		ND	 0.996	ND	 4.42
 ND	 4.66		ND	 0.996	ND	 4.42
 ND	 4.66		ND	 0.996	ND	 4.42
 ND	 4.66		ND	 0.996	ND	 4.42
 ND	 4.66		ND	 0.996	ND	 4.42
 ND	 4.66		ND	 0.996	ND	 4.42
 ND	 14		ND	 2.99	ND	 13.3
 ND	 140		ND	 29.9	ND	 133
 ND	 140		ND	 29.9	ND	 133
ND	140		ND	23.3	ND	155
 ND	 2.82		ND	 249	ND	 2.74
 ND	 2.82		ND	 249	ND	 2.74
 ND	 2.82		ND	 249	ND	 2.74
 ND	 2.82		ND	 249	ND	 2.74
 ND	 4.23		ND	 249	ND	 4.1
 ND	 4.23		ND	 249	ND	 4.1
 ND	 4.23		ND	 249	ND	 4.1
 ND	 2.82		ND	 249	ND	 2.74
 ND	 2.82		ND	 249	ND	 2.74
 ND	 2.82		ND	 249	ND	 2.74
 ND	 2.82		ND	 249	ND	 2.74
 ND	 2.82		ND	 249	ND	 2.74
 ND	 2.82		ND	 249	ND	 2.74
 ND	 5.64		ND	 249	ND	 5.46
 ND	 5.64		ND	 249	ND	 5.46
 ND	 5.64		ND	 249	ND	 5.46
 ND	 2.82		ND	 249	ND	 2.74
 ND	 2.82		ND	 249	ND	 2.74
 ND	 4.23		ND	 249	ND	 4.10
 ND	 2.82		ND	 249	ND	 2.74
 ND	 28.2		ND	 249	ND	 27.4
 ND	 14.1	\dashv	ND	 249	ND	 13.6
 ND ND	 14.1		ND	 249	ND	 13.6
ND	14.1		ND	249	ND	13.6
 עויו	 14.1		טעו	 249	טעו	 15.0

 ND	 70.5	ND	 249	ND	 68.3
 ND	 70.5	ND	 598	ND	 68.3
 ND	 7.05	ND	 249	ND	 6.83
 ND	 7.05	ND	 249	ND	 6.83
 ND	 28.2	ND	 249	ND	 27.4
 ND	 28.2	ND	 249	ND	 27.4
 ND	 28.2	ND	 249	ND	 27.4
 ND	 5.64	ND	 249	ND	 5.46
ND	 14.1	ND	 249	ND	 13.6
 ND	 14.8	ND	 249	ND	 14.3
ND	 14.1	ND	 249	ND	 13.6
 ND	 14.1	ND	 249	ND	 13.6
 ND	 42.3	ND	 249	ND	 41
 ND	 28.2	ND	 249	ND	 27.4
 ND	 28.2	ND	 249	ND	 27.4
 ND ND	 28.2	ND	 249	ND	 27.4
 ND ND	 28.2	ND	 249	ND	 27.4
 ND ND	 28.2	ND	 249	ND	 27.4
ND	 7.05	ND	249	ND	6.83
 ND ND	7.05		 249		 6.83
 ND ND	 7.05	ND	 249	ND	
 +	 l	ND		ND	 6.83
 ND	 7.05	ND	 249	ND	 6.83
 ND	 7.05	ND	 249	ND	 6.83
 ND	 7.05	ND	 249	ND	 6.83
 ND	 2.82	ND	 249	ND	 2.74
 ND ND	 7.05	ND	 249	ND	 6.83
 ND ND	 14.1	ND	 249	ND	 13.6
 ND	 7.05	ND	 249	ND	 6.83
 ND ND	 2.82	ND	 249	ND	 2.74
 ND ND	 7.05	ND	 249	ND	 6.83
 ND	 7.05	ND	 249	ND	 6.83
 ND	 7.05	ND	 249	ND	 6.83
 ND ND	 7.05	ND	 249	ND	 6.83
 ND	 7.05	ND	 249	ND	 6.83
 ND	 7.05	ND	 249	ND	 6.83
 ND	 14.1	ND	 249	ND	 13.6
 ND	 7.05	ND	 249	ND	 6.83
 ND	 56.4	ND	 249	ND	 54.6
 ND	 56.4	ND	 249	ND	 54.6
 ND	 56.4	ND	 249	ND	 54.6
 ND	 28.2	ND	 249	ND	 27.4
 ND	 28.2	ND	 249	ND	 27.4
 ND	 28.2	ND	 249	ND	 27.4
 ND	 352	ND	 1250	ND	 341

	ND	 14.1	ND	 249	ND	 13.6
	ND	 7.05	ND	 249	ND	 6.83
	ND	 7.05	ND	 249	ND	 6.83
	ND	 70.5	ND	 249	ND	 68.3
	ND	 28.2	ND	 249	ND	 27.4
	ND	 70.5	ND	 249	ND	 68.3
	ND	 70.5	ND	 249	ND	 68.3
	ND	 70.5	ND	 249	ND	 68.3
	ND	 14.1	ND	 498	ND	 13.6
	1.65	 1.10	ND	 1.03	59.0**	 1.02
	59.4	 1.10		 	74.4	 1.02
	ND	 0.221	ND	 0.206	ND	 0.205
	ND	 4.42	3.88	 1.03	9.69	 4.09
1.02	24.5	 1.10	11.7	 1.03		
	2.5	 0.221	ND	 1.03	3.47	 0.205
	210	 1.10	145	 1.03		
	ND	 0.0884	ND	 0.165	ND	 0.0818
	ND	 2.21		 	ND	 2.05
	ND	 0.221		 	ND	 0.205
	33.3	 4.42	17.1	 4.11		

was 59 mg/kg. The result from reanalysis of a second aliquot from the same sample was 4.45. Three 5-point ceived.

zinc and manganese results are not on table; supplier indicates results met criteria and will be providing labora

material							
material							
urce							

	BEACH BACKFILL ³														
BEA	REAK (ACH BA eanalys Grab	NCK			3-S Con	ηp		ВЕ	B-C Con	_			B-N Cor omposi		
RESULT	DL	RL		RESULT	DL	RL		RESULT	DL	RL		RESULT	DL	RL	
KESOET	- D-	11.		KESOET	D.	112		IKESOET		11.		KESOLI	DL	116	

ND	2.79							
	 2.79		 		 		 	
ND ND	 2.79		 		 		 	
ND	 2.79		 		 		 	
ND	 4.18		 		 		 	
ND	 4.18		 		 		 	
ND	 4.18		 		 		 	
ND	 2.79		 		 		 	
ND	 2.79		 		 			
ND	 2.79		 		 		 	
ND	 2.79		 		 		 	
ND	 2.79		 		 		 	
ND	 2.79		 		 		 	
ND	 5.57		 		 		 	
ND	 5.57		 		 		 	
ND	 5.57		 		 		 	
ND	 2.79		 		 		 	
ND	 2.79		 		 		 	
ND	 4.18		 		 		 	
ND	 2.79		 		 		 	
ND	 27.9		 		 		 	
ND	 13.9		 		 		 	
ND	 13.9		 		 		 	
ND	 13.9		 		 		 	
טאו	 13.5		 		 		 	Щ

ND	 69.7	 		 		 	 П
ND	 69.7	 		 		 	 H
ND	 69.7	 		 		 	
ND	 69.7	 		 		 	 H
ND	 27.9	 		 		 	 \vdash
ND	 27.9	 		 		 	
ND	 27.9	 		 		 	
ND	 5.57	 		 		 	
ND	 13.9	 		 		 	 H
ND	 14.6	 		 		 	
ND	 13.6	 		 		 	 H
ND	 13.6						Н
ND	 41.8			 		 	 \vdash
ND	27.9	 		 		 	 \vdash
	 27.9	 		 		 	 \vdash
ND ND	 27.9	 		 		 	 Н
ND	 27.9	 		 		 	 \vdash
		 		 		 	 \vdash
ND	 27.9	 		 		 	 \vdash
ND	 6.97	 		 		 	 \vdash
ND	 6.97	 		 		 	 +
ND	 6.97	 		 		 	
ND	 6.97	 		 		 	 +
ND	 6.97	 		 		 	 +
ND	 6.97	 		 		 	 +
ND	 2.79	 		 		 	
ND	 6.97	 		 		 	 -
ND	 13.9	 		 		 	 \vdash
ND	 6.97	 		 		 	
ND	 2.79	 		 		 	 -
ND	 6.97	 		 		 	 \vdash
ND	 6.97	 		 		 	 \vdash
ND	 6.97	 		 		 	 Н
ND	 6.97	 	 _	 		 	 Щ
ND	 6.97	 		 		 	 Щ
ND	 6.97	 		 		 	 Щ
ND	 13.9	 	 	 		 	 Щ
ND	 6.97	 		 		 	 Щ
ND	 54.6	 		 		 	 Щ
ND	 55.7	 	 	 		 	 Щ
ND	 55.7	 		 		 	 Щ
ND	 27.9	 		 		 	
ND	 27.9	 	 	 		 	 Щ
ND	 27.9	 	 	 		 	 Ш
ND	 348	 		 		 	 Щ

		,					г —	1		1				ı	_
ND		13.9													
ND		6.97													
ND		6.97													
ND		6.97													
ND		27.9							-						
ND		69.7													
ND		69.7							1						
ND		69.7													
ND		13.9													
4.45**		1.02		4.29		1.02		4.43		1.04		4.46		1.10	
38.2		1.02													
ND		0.205							1						
9.51		4.09													
3.28		0.205													
									1						
ND		0.0818							1						
ND		2.05							1						
ND		0.205							1						
									1						
compos	ite san	nples were	e the	en colle	cted fr	om the r	nat	erial and	the res	sulting ar	sen	ic conce	ntratio	ns were	4.2
tory rep	ort														
		I													
	1						1				1		1		

		i				
	Total C		Import Criteria			
	ompos					
RESULT	DL	RL				
			2.5			
			2.5			
			2.5			
			2.5			
			2.5			
			2.5			
			2.5			
			2.5			
			2.5			
			2.5			
			2.5			
			2.5			
			2.5			
			0.5			
			0.5			
			5			
			5			
ND		0.10	10			
ND		9.19	10			
ND		9.19	10			
ND		9.19	10	-		
ND		9.19	10			
ND		9.19	10	_		
ND		9.19	10	_		
ND		9.19	10			
ND		1.8	5			
ND		1.8	5			
ND		1.8	5		 	

ND	 1.8	5			
ND	 1.8	5			
ND	 1.8	100			
ND	 1.8	100			
ND	 1.8	5			
ND	 1.8	5			
ND	 1.8	5			
ND	 1.8	5			
ND	 1.8	5			
ND	 1.8	5			
ND	 1.8	5			
ND	 1.8	5			
ND	 1.8	5			
ND	 1.8	5			
ND	 1.8	5			
ND	 1.8	5			
ND	 5.41	5			
ND	 54.1				
ND	 54.1	250			
ND	 2.65	330			
ND	 2.65	330			
ND	 2.65	330			
ND	 2.65	330			
ND	 3.97	330			
ND	 3.97				
ND	 3.97				
ND	 2.65	330			
ND	 2.65	330			
ND	 2.65	330			
ND	 2.65	330			
ND	 2.65	330			
ND	 2.65	330			
ND	 5.29	10000			
ND	 5.29		 		
ND	 5.29	330			
ND	 2.65	330			
ND	 2.65	330			
ND	 3.97		 		
ND	 2.65	330	 		
ND	 26.5				
ND	 13.2				
ND	 13.2				
ND	 13.2	330			

ND	 66.2				
ND	 66.2				
ND	 6.62	330			
ND	 6.62	330			
ND	 26.5				
ND	 26.5	2000			
ND	 26.5				
ND	 5.29	330			
ND	 13.2				
ND	 13.2				
ND	 13.2				
ND	 13.2				
ND	 39.7	330			
ND	 26.5	330			
ND	 26.5	330			
ND ND	 26.5	330			
ND ND	 26.5	330			
ND	 26.5	330			
ND	 6.62				
ND	6.62				
ND	 6.62	220			
_		330			
ND	 6.62				
ND	 6.62				
ND	 6.62	220			
ND	 2.65	330			
ND	 6.62	330			
ND	 13.2	220			
ND	 6.62	330			
ND	 2.65				
ND	 6.62	330			
ND	 6.62	330			
ND	 6.62	330			
ND	 6.62	330			
ND	 6.62				
ND	 6.62				
ND	 13.2				
ND	 6.62				
ND	 52.9				
ND	 52.9				
ND	 52.9				
ND	 26.5				
ND	 26.5				
ND	 26.5				
ND	 330	2000			

ND		13.2	330			
ND		6.62				
ND		6.62				
ND		66.2				
ND		26.5				
ND		66.2				
ND		66.2				
ND		66.2				
ND		13.2				
3.91		1.10	8.8			
ND		0.22	0.63			
8.59		1.1	76			
25.2		2.20	34			
3.36		0.22	79			
323		1.10	1800			
ND		0.0881	0.23			
28.9		4.40	180			
, 4.43 an	ıd 4.46	mg/kg. La	aboratory reports from			
				<u> </u>		

	T	Г	T			T	
-				-	-		

	•			•	
<u> </u>					
			1		
<u> </u>					
I					

 	_	_	_	_	_	_	

	•			•	
<u> </u>					
			1		
<u> </u>					
I					

	•			•	
<u> </u>					
			1		
<u> </u>					
I					

	T	Г	T		T	

	•			•	
<u> </u>					
			1		
<u> </u>					
I					

	•			•	
<u> </u>					
			1		
<u> </u>					
I					

	T	Г	T			T	
-				-	-		

	•			•	
<u> </u>					
			1		
<u> </u>					
I					

 	_	_	_	_	_	_	

		•		•	
			<u> </u>		
1					

		•		•	
			<u> </u>		
1					

		•		•	
			<u> </u>		
1					

		•		•	
			<u> </u>		
1					
